Using OpenAI-Compatible API

Image Generation with OpenAI-Compatible API

Last updated November 25, 2025

AI Gateway supports image generation using the OpenAI-compatible API. You can generate images using multimodal LLMs or dedicated image generation models.

You can view all available models that support image generation by using the Image filter at the AI Gateway Models page.

For AI SDK usage with image generation capabilities, see the AI SDK documentation.

Multimodal LLMs like Nano Banana, Nano Banana Pro, and GPT-5 variants can generate images alongside text using the /v1/chat/completions endpoint. Images are returned in the response's images array.

{
  "id": "chatcmpl-123",
  "object": "chat.completion",
  "created": 1677652288,
  "model": "google/gemini-3-pro-image",
  "choices": [
    {
      "index": 0,
      "message": {
        "role": "assistant",
        "content": "I've generated a beautiful sunset image for you.",
        "images": [
          {
            "type": "image_url",
            "image_url": {
              "url": "..."
            }
          }
        ]
      },
      "finish_reason": "stop"
    }
  ],
  "usage": {
    "prompt_tokens": 15,
    "completion_tokens": 28,
    "total_tokens": 43
  }
}

For streaming requests, images are delivered in delta chunks:

{
  "id": "chatcmpl-123",
  "object": "chat.completion.chunk",
  "created": 1677652288,
  "model": "google/gemini-3-pro-image",
  "choices": [
    {
      "index": 0,
      "delta": {
        "images": [
          {
            "type": "image_url",
            "image_url": {
              "url": "..."
            }
          }
        ]
      },
      "finish_reason": null
    }
  ]
}

Dedicated image generation models use the OpenAI Images API (/v1/images/generations) for specialized image creation.

Google's Imagen models provide high-quality image generation with fine-grained control. Multiple models are available including google/imagen-4.0-ultra-generate-001 and google/imagen-4.0-generate-001.

View available Imagen provider options for configuration details.

generate-imagen-simple.ts
import OpenAI from 'openai';
import 'dotenv/config';
 
async function main() {
  const openai = new OpenAI({
    apiKey: process.env.AI_GATEWAY_API_KEY,
    baseURL: 'https://ai-gateway.vercel.sh/v1',
  });
 
  const result = await openai.images.generate({
    model: 'google/imagen-4.0-ultra-generate-001',
    prompt: `A snow leopard prowling through a rocky mountain landscape during a light snowfall`,
    n: 2,
  });
 
  // Process the generated images
  for (const image of result.data) {
    if (image.b64_json) {
      console.log(
        'Generated image (base64):',
        image.b64_json.substring(0, 50) + '...',
      );
    }
  }
}
 
main().catch(console.error);
generate-imagen-options.ts
import OpenAI from 'openai';
import 'dotenv/config';
 
async function main() {
  const openai = new OpenAI({
    apiKey: process.env.AI_GATEWAY_API_KEY,
    baseURL: 'https://ai-gateway.vercel.sh/v1',
  });
 
  const result = await openai.images.generate({
    model: 'google/imagen-4.0-ultra-generate-001',
    prompt: `A cascading waterfall in a lush rainforest with mist rising and exotic birds flying`,
    n: 2,
    // @ts-expect-error - Provider options are not in OpenAI types
    providerOptions: {
      googleVertex: {
        aspectRatio: '1:1',
        safetyFilterLevel: 'block_some',
      },
    },
  });
 
  // Process the generated images
  for (const image of result.data) {
    if (image.b64_json) {
      console.log(
        'Generated image (base64):',
        image.b64_json.substring(0, 50) + '...',
      );
    }
  }
}
 
main().catch(console.error);
generate-imagen.py
import base64
import json
import os
from datetime import datetime
 
from dotenv import load_dotenv
from openai import OpenAI
 
load_dotenv()
 
def main():
    api_key = os.getenv("AI_GATEWAY_API_KEY") or os.getenv("VERCEL_OIDC_TOKEN")
    base_url = (
        os.getenv("AI_GATEWAY_BASE_OPENAI_COMPAT_URL")
        or "https://ai-gateway.vercel.sh/v1"
    )
 
    client = OpenAI(
        api_key=api_key,
        base_url=base_url,
    )
 
    result = client.images.generate(
        model="google/imagen-4.0-ultra-generate-001",
        prompt=(
            "A red fox walking through a snowy forest clearing "
            "with pine trees in the background"
        ),
        n=2,
        response_format="b64_json",
        extra_body={
            "providerOptions": {
                "googleVertex": {
                    "aspectRatio": "1:1",
                    "safetyFilterLevel": "block_some",
                }
            }
        },
    )
 
    if not result or not result.data or len(result.data) == 0:
        raise Exception("No image data received from OpenAI-compatible endpoint")
 
    print(f"Generated {len(result.data)} image(s)")
 
    for i, image in enumerate(result.data):
        if hasattr(image, "b64_json") and image.b64_json:
            # Decode base64 to get image size
            image_bytes = base64.b64decode(image.b64_json)
            print(f"Image {i+1}:")
            print(f"  Size: {len(image_bytes)} bytes")
            print(f"  Base64 preview: {image.b64_json[:50]}...")
 
            # Save image to file with timestamp
            timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
            output_file = f"output/output_image_{timestamp}_{i+1}.png"
            print(f"  Saving image to {output_file}")
            with open(output_file, "wb") as f:
                f.write(image_bytes)
 
    if hasattr(result, "provider_metadata"):
        print("\nProvider metadata:")
        print(json.dumps(result.provider_metadata, indent=2))
 
if __name__ == "__main__":
    main()

Black Forest Labs' Flux models offer advanced image generation with various capabilities. Multiple models are available including but not limited to:

  • bfl/flux-2-pro
  • bfl/flux-kontext-max
  • bfl/flux-kontext-pro
  • bfl/flux-pro-1.0-fill
  • bfl/flux-pro-1.1

View available Black Forest Labs provider options for configuration details.

generate-bfl-simple.ts
import OpenAI from 'openai';
import 'dotenv/config';
 
async function main() {
  const openai = new OpenAI({
    apiKey: process.env.AI_GATEWAY_API_KEY,
    baseURL: 'https://ai-gateway.vercel.sh/v1',
  });
 
  const result = await openai.images.generate({
    model: 'bfl/flux-2-pro',
    prompt: `Render an echidna swimming across the Mozambique channel at sunset with phosphorescent jellyfish`,
  });
 
  // Process the generated images
  for (const image of result.data) {
    if (image.b64_json) {
      console.log(
        'Generated image (base64):',
        image.b64_json.substring(0, 50) + '...',
      );
    }
  }
}
 
main().catch(console.error);
generate-bfl-options.ts
import OpenAI from 'openai';
import 'dotenv/config';
 
async function main() {
  const openai = new OpenAI({
    apiKey: process.env.AI_GATEWAY_API_KEY,
    baseURL: 'https://ai-gateway.vercel.sh/v1',
  });
 
  const result = await openai.images.generate({
    model: 'bfl/flux-2-pro',
    prompt: `Draw a gorgeous image of a river made of white owl feathers snaking through a serene winter landscape`,
    // @ts-expect-error - Provider options are not in OpenAI types
    providerOptions: {
      blackForestLabs: {
        outputFormat: 'jpeg',
        safetyTolerance: 2,
      },
    },
  });
 
  // Process the generated images
  for (const image of result.data) {
    if (image.b64_json) {
      console.log(
        'Generated image (base64):',
        image.b64_json.substring(0, 50) + '...',
      );
    }
  }
}
 
main().catch(console.error);
generate-bfl.py
import base64
import json
import os
from datetime import datetime
 
from dotenv import load_dotenv
from openai import OpenAI
 
load_dotenv()
 
def main():
    api_key = os.getenv("AI_GATEWAY_API_KEY") or os.getenv("VERCEL_OIDC_TOKEN")
    base_url = (
        os.getenv("AI_GATEWAY_BASE_OPENAI_COMPAT_URL")
        or "https://ai-gateway.vercel.sh/v1"
    )
 
    client = OpenAI(
        api_key=api_key,
        base_url=base_url,
    )
 
    result = client.images.generate(
        model="bfl/flux-2-pro",
        prompt=(
            "A mystical aurora borealis dancing over a frozen lake "
            "with snow-covered mountains reflected in the ice"
        ),
        n=1,
        response_format="b64_json",
        extra_body={
            "providerOptions": {
                "blackForestLabs": {
                    "outputFormat": "jpeg",
                    "safetyTolerance": 2,
                }
            }
        },
    )
 
    if not result or not result.data or len(result.data) == 0:
        raise Exception("No image data received from OpenAI-compatible endpoint")
 
    print(f"Generated {len(result.data)} image(s)")
 
    for i, image in enumerate(result.data):
        if hasattr(image, "b64_json") and image.b64_json:
            # Decode base64 to get image size
            image_bytes = base64.b64decode(image.b64_json)
            print(f"Image {i+1}:")
            print(f"  Size: {len(image_bytes)} bytes")
            print(f"  Base64 preview: {image.b64_json[:50]}...")
 
            # Save image to file with timestamp
            timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
            output_file = f"output/output_image_{timestamp}_{i+1}.png"
            print(f"  Saving image to {output_file}")
            with open(output_file, "wb") as f:
                f.write(image_bytes)
 
    if hasattr(result, "provider_metadata"):
        print("\nProvider metadata:")
        print(json.dumps(result.provider_metadata, indent=2))
 
if __name__ == "__main__":
    main()

You can use the OpenAI Python client to generate images with the AI Gateway. This example demonstrates a complete workflow including error handling, image saving, and metadata display:

generate-image-python.py
import base64
import json
import os
from datetime import datetime
 
from dotenv import load_dotenv
from openai import OpenAI
 
load_dotenv()
 
def main():
    api_key = os.getenv("AI_GATEWAY_API_KEY") or os.getenv("VERCEL_OIDC_TOKEN")
    base_url = (
        os.getenv("AI_GATEWAY_BASE_OPENAI_COMPAT_URL")
        or "https://ai-gateway.vercel.sh/v1"
    )
 
    client = OpenAI(
        api_key=api_key,
        base_url=base_url,
    )
 
    prompt = (
        "A majestic blue whale breaching the ocean surface at sunset "
        "with dolphins swimming alongside"
    )
 
    result = client.images.generate(
        model="bfl/flux-2-pro",
        prompt=prompt,
        n=1,
        response_format="b64_json",
        extra_body={
            "providerOptions": {
                "blackForestLabs": {
                    "outputFormat": "jpeg",
                    "safetyTolerance": 2,
                }
            }
        },
    )
 
    if not result or not result.data or len(result.data) == 0:
        raise Exception("No image data received from OpenAI-compatible endpoint")
 
    print(f"Generated {len(result.data)} image(s)")
 
    for i, image in enumerate(result.data):
        if hasattr(image, "b64_json") and image.b64_json:
            # Decode base64 to get image size
            image_bytes = base64.b64decode(image.b64_json)
            print(f"Image {i+1}:")
            print(f"  Size: {len(image_bytes)} bytes")
            print(f"  Base64 preview: {image.b64_json[:50]}...")
 
            # Save image to file with timestamp
            timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
            output_file = f"output/output_image_{timestamp}_{i+1}.png"
            print(f"  Saving image to {output_file}")
            with open(output_file, "wb") as f:
                f.write(image_bytes)
 
    if hasattr(result, "provider_metadata"):
        print("\nProvider metadata:")
        print(json.dumps(result.provider_metadata, indent=2))
 
if __name__ == "__main__":
    main()

You can also use the OpenAI Images API directly via REST without a client library:

generate-image-rest.ts
import 'dotenv/config';
 
async function main() {
  const apiKey = process.env.AI_GATEWAY_API_KEY;
  const baseURL = 'https://ai-gateway.vercel.sh/v1';
 
  const response = await fetch(`${baseURL}/images/generations`, {
    method: 'POST',
    headers: {
      Authorization: `Bearer ${apiKey}`,
      'Content-Type': 'application/json',
    },
    body: JSON.stringify({
      model: 'bfl/flux-2-pro',
      prompt: `A playful dolphin pod jumping through ocean waves at sunrise with seabirds flying overhead`,
      providerOptions: {
        blackForestLabs: { outputFormat: 'jpeg' },
      },
      n: 3,
    }),
  });
 
  if (!response.ok) {
    throw new Error(`Image generation failed: ${response.status}`);
  }
 
  const json = await response.json();
 
  // Process the generated images
  for (const image of json.data) {
    if (image.b64_json) {
      console.log(
        'Generated image (base64):',
        image.b64_json.substring(0, 50) + '...',
      );
    }
  }
 
  console.log('Generated', json.data.length, 'image(s)');
}
 
main().catch(console.error);

Was this helpful?

supported.