A Vercel

Improve build speed
and developer velocity
with monorepos

NETFLIX ﬁ-'JHashiCorp C) QO Meta The Washington Post 4y Autho Uber &G Tripadvisor

//Contents

02 What are monorepos?

What are monorepos?

Why do teams use monorepos?

1 4 The Turborepo solution

Incremental builds

Remote caching

Parallel task running

A MONOREPOS FOR TEAMS

08

19

Monorepo challenges

Speed
Orchestration

Complexity

Turborepo on Vercel

All performance
Keeping you organized

Contact us

01

What are monorepos?

OOOOOOOOOOOOOOOOO

What are monorepos?

Championed by Google and Meta, monorepos are
codebases that can contain multiple projects in a
single code repository. This kind of architecture
enables teams to use multiple programming
languages and frameworks all in one space.

For frontend teams, monorepos can
improve collaboration, transparency, and
overall productivity through code sharing,
discoverability, and standardization.

While monorepos offer several workflow
benefits to developers, they present
challenges, too—especially for smaller teams
who can't afford to build, maintain, and/or
configure sophisticated build systems large
organizations have.

A MONOREPOS FOR TEAMS

In this brief, we're going to
explore those challenges and
show how your team can

overcome them with Turborepo,

a high performance build
system that makes monorepos
accessible to everyone.

»

03

Why do teams use monorepos?

Monorepos can contribute to a better, more
efficient workflow. From faster development
to easier collaboration, they enable
developers to ship with confidence.

Let’s start with shared code and visibility.
Monorepos allow a team to centralize around
a single source of truth so it's easier to search,
share, and reuse code across systems,
applications, libraries, and utilities. As code
reuse and visibility improves, so does code
consistency.

Monorepos support atomic changes, or the
ability to update multiple projects in a single
commit. This also helps ensure consistency
across products and features, and prevents
the pain of trying to coordinate commits
across your entire codebase.

A MONOREPOS FOR TEAMS

7) Faster development
7) Easier collaboration

7) Smarter workflow

Co-locating your code, issues, pull requests,
deployment, automation, testing, and more
reduces context switching and noise. What
does this mean for your team'’s productivity?
Everything from onboarding new hires to
shipping new features gets a whole lot faster.

04

If monorepos are so great,
why doesn’t everyone
use them?

For all the benefits of monorepos, they
aren't without challenges. While some
larger organizations have the budget and
resources to overcome these challenges,
leaner teams often feel this architecture
is out of reach.

With the right tools, anyone can unlock the
power of monorepos.

A MONOREPOS FOR TEAMS

O

Enter

Turborepo takes the lessons and
development workflows from

the giants of the Web and brings
them to teams of all sizes. As

an open-source project, it lowers
the barriers to entry for using
monorepos and making them
accessible to everyone.

05

MAKESWIFT

"CIl/CD times went from 20 minutes to 8
minutes once we started using Turborepo.”

Multiple releases o Faster Faster

launched ahead Ccl/cD build

of schedule 0 pipeline L speeds
Miguel Oller Founder and CTO, Makeswift

A MONOREPOS FOR TEAMS 06

Turborepo is a high-performance
build system for JavaScript and
TypeScript codebases that abstracts
away the complex configuration
needed for monorepos, giving you a
world-class development experience
without the maintenance burden.

Before you can fully understand
the power of tools like Turborepo,
let’s unpack the top monorepo
challenges that these tools
solve for.

A MONOREPOS FOR TEAMS

|

[site

(3 dashboard

(3 posts

www
acme.com

app

app.acme.com

blog

!?\OQ.HCI“I»TJ.COIN

07

Monorepo challenges

épeed

Ask a developer their biggest headache about
monorepos and they'll tell you that they need
constant maintenance, break often, and often
result in painfully slow builds. With so many
interdependencies and packages, builds take too
many steps and can bring iteration to a standstill.
And with any change, the entire monorepo has to
be rebuilt. (You no longer have the benefit of
being able to build one small piece of the
application.)

When it comes to caching builds, that’s equally
as painful. Constant reruns waste time and
resources. Ideally, your developers would only
execute work that hasn’t been done before.
This process of only building what's changed
is called incremental builds.

A MONOREPOS FOR TEAMS

To do that, your team needs to write
automation that knows and understands your
codebase at a deeper dependency and task
level. What’s more, they then have to maintain
it. The end result: instead of focusing on

your product, developers must also create and
maintain an additional build system.

This is where the appeal of monorepos fades.

Developers feel like they’'re fighting—and
responsible for maintaining—a system that
should be making their lives easier.

09

brchestration

Another significant challenge with monorepos For example, say you change some copy and
is when it comes time to schedule tasks. forget to update the snapshot test. The test
Consider testing: developers report that testing suite fails and the entire thing has to be rerun.
is one of their main hurdles to shipping faster. In the case of monorepos, it’s a trivial change
that ends up taking a lot of time to fix.
However, testing is particularly complicated with ldentifying and rerunning the right test, at the
monorepos because both test and often build/ right time, and confirming it won’t impact other
compile tasks must be completed in the right tasks or code requires high levels of
order to ensure that all dependencies are built orchestration and dependency analysis.

from source and available at the correct time.

Like builds, testing an entire codebase takes
time. The same concept of incrementalism
applies: If you're only testing for one small
change, you only want that change to

be tested and re-deployed. You also want

to know that change won't negatively impact
other applications in your monorepo. Easily
said—not so easily done.

A MONOREPOS FOR TEAMS 10

Complexity

Monorepos are complicated. There’s a lot to
manage and—equally—a lot that can go wrong.
Mapping what works for a single package or
application to multiple packages and applications
is an enormously complex task that’s not always
obvious or well documented. It also requires
custom coordination and automation scripts to
get it to work correctly.

Even if you have a tool that allows you to run

a script across different packages, the existing
tooling often isn't flexible when a one-off
package needs to do something a

little differently.

A MONOREPOS FOR TEAMS

It's either all or nothing. Instead of focusing
on building and shipping the product, this
lack of standardization leaves developers
continuously configuring and piecing
together solutions—which then also need to
be maintained.

Your team needs a tool that is flexible to meet
new needs or different configurations without
forcing them to start from scratch.

11

Shipping takes too long

After speaking with many development
teams, one thing became clear—deployments
are simply slower than they should be with
monorepos. Teams are installing and often
building more than what's needed with each
change. The benefits of monorepos are
almost within reach, but developers continue
to struggle to solve for challenges like speed,
orchestration, and complexity.

A MONOREPOS FOR TEAMS

If your team has gone down this path,
you've probably explored different
solutions like finding a tool or building
one in house. Even so, you're still seeing
builds take 30 minutes. Or maybe
you've investigated Bazel and Buck
(complex build systems from Google
and Meta respectively). But the
enormous constraints on your codebase
seem risky, especially when the
migration would pull your team away
from shipping your product.

12

Monorepos shouldn't
be

Instead, Turborepo makes them accessible—with a

high-performance build system you can add in a day,
not weeks or months.

A MONOREPOS FOR TEAMS

13

The

TURBOREPO
solution

OOOOOOOOOOOOOOOOO

85%

faster builds

Turborepo removes the complex
maintenance burden holding
developers back from adopting
monorepos—and makes build
times faster.

A MONOREPOS FOR TEAMS

Let's explore how
Turborepo helps
teams with:

¢ Incremental builds
¢ Remote caching
¢ Parallel task running

15

The Turborepo

Incremental builds

Building once is painful enough. By analyzing your
codebase, Turborepo can determine what’s new and
what’s impacted by a given change to determine the
minimum amount of work that needs to be done.

Remote caching

If incremental builds determine what work to do, remote
caching determines if this work has been done before.
Another way to think of remote caching is like a shared
drive for your builds. That means you can share the
Turborepo cache across your whole team and CI, and
you won't need to recompile, retest, or re-execute your
code if it's unchanged.

Aside from saving space on your machine, it also results
in even faster, more incremental builds. Plus, if you only
have one small change to one piece of code, you only
need to test that code, not your whole codebase.

A MONOREPOS FOR TEAMS

npm run build

g 0 cached, 6 total

npm run build

6 cached, 6 total >>> FU

AR 2 ~

npm run build

E;a 6 cached, 6 total >>> FU

npm run build

w E;J 6 cached, 6 total >>> FUI

WITH TURBO

116ms builds, from cache

4m 9s

116ms

116ms

116ms

16

The Turborepo solution

Parallel task running

To speed things up even further, Turborepo helps
developers split builds into parallel operations, so
they can run multiple tasks at the same time. This
is unique to Turborepo—while other JavaScript
build tools run things in dependency-first order,
Turborepo can determine how different tasks
relate to one another.

Turbo run 1lint build test deploy

T

lint

int

A MONOREPOS FOR TEAMS

Parallel tasks save an enormous amount of time
in the build process and will help your team
iterate and ship faster, without worrying that one
small change will hold up the whole process.

17

@ Watershed

"With Turborepo, we were able to give each
workspace its own build, test, and typecheck scripts
and not worry about manually managing when they

execute—Turborepo handles the pipelining and
caching. Turborepo’s remote caching has drastically
sped up our Cl runs when a code change only
touches one or a few workspaces.”

Spike Brehm Software Engineer, Watershed

A MONOREPOS FOR TEAMS

18

TURBOREPO
onh Vercel

OOOOOOOOOOOOOOOOO

All performance.

No overhead.

Turborepo is open source and works
well with most development tools, but
its full power is realized on Vercel, the
end-to-end development platform.
Turborepo works out-of-the-box on
Vercel and is easy to set up with zero
configuration needed.

This means teams can adopt and use features
like remote caching right away. Since Turborepo
joined Vercel, we've seen development teams of
all sizes adopt Turborepo for faster builds and
save an average of 76.8 hours per month by
remotely caching their deployments on Vercel.

A MONOREPOS FOR TEAMS

24,236,810

TOTAL COMPUTE MINUTES SAVED
BY TURBOREPO. AND COUNTING.

20

Monorepos keep your
code organized.

Monorepos can be extremely useful for
productivity and collaboration, but the tooling
can be a nightmare. It's become completely
normal to spend entire days on tooling alone
—tweaking configs, writing one-off scripts,
and stitching things together. In the end,
your development cycles take longer, which
means products are released slower than
they can and should be.

A MONOREPOS FOR TEAMS

We need a fresh take on the whole setup:

A toolchain that works for you and not
against you, with sensible defaults, and even
better escape hatches. One that’s built with
the same techniques used by large teams,
but in a way that doesn't require a PhD to
learn or staff to maintain.

With Turborepo on Vercel, we're doing just
that: abstracting the complex configuration
needed for most monorepos into a single
cohesive build system—qgiving you a world-
class development experience without the
maintenance burden.

21

Q STATELY

"Turborepo has saved us 6/ hours
of Cl since we adopted it.
That's for a team of only four
full-time developers.”

Matt Pocock Lead Developer, Stately.ai

A MONOREPOS FOR TEAMS

22

A Vercel

Unlock of monorepos
and enable your team to ship faster
with Turborepo.

TTTTTTTTTTTTTTTTTTTTTTTTTTTTT

NETFLIX ﬁ-'JHashiCorp C) OQOMeta The Washington Post yAuho Uber & Tripadvisor

A Vercel

Unlock of monorepos
and enable your team to ship faster
with Turborepo.

TTTTTTTTTTTTTTTTTTTTTTTTTTTTT

NETFLIX ﬁ-'JHashiCorp C) OQOMeta The Washington Post yAutho Uber & Tripadvisor

